
Samson Cheung, Ph.D.

ernail: cheung@nas.nasa.gov

Halcyon Systems Inc., San Francisco, California, USA

Abstract
This paper helps the reader understand the characteristics of the Cray X1 vector supercomputer
system, and provides hints and information to enable the reader to port codes to the system. It
provides a comparison between the basic performance of the X1 platform and other platforms that are
available at NASA Ames Research Center. A set of codes, solving the Laplacian equation with
different parallel paradigms, is used to understand some features of the X1 compiler. An example code
fiom the NAS Parallel Benchmarks is used to demonstrate performance optimization on the X1
platform. *

Key Words : Cray X1 , High Performance Computing, MPI, OpenMP

Introduction
The Cray vector supercomputer, which dominated in the 80's and early ~ O ' S , was replaced by clusters
of shared-memory processors (SMPs) in the mid-90's. Universities across the US. use commodity
components to build Beowulf systems to achieve high peak speed [11. The supercomputer center at
NASA Ames Research Center had over 2000 CPUs of SGI Origin CCNUMA machines in 2003. This
technology path provides excellent p r i c d p e d o m c e iiiti~; hwve~er, many application sofixare
programs (e.g. Earth Science, validated vectorized CFD codes) sustain only a small faction of the peak
without a major rewrite of the code.

The Japanese Earth Simulator demonstrated the low price/performance ratio by vector processors
connected to high-bandwidth memory and high-performance networking [2]. Several scientific
applications sustain a large fi-action of its 40 WLOPS/sec peak performance.

The Cray X1 is a scalable vector system [3], characterized by high-speed custom vector processors,
higbmemory bandwidth, and a high-bandwidth interconnect linking the nodes. The efficiency of the
processors in the Cray X1 is anticipated to be comparable to the efficiency of the NEC SX-6
processors in the Earth Simulator on many computational science applications.

The Department of Energy recently announced (May 12,2004) an award of $25 Million to the Oak
Ridge National Lab to lead the effort to install the world's largest computer using X1 technology. [4]

This paper will focus on the system characteristics and application optimization techniques. The
hardware will be briefly described, followed by a comparison of the NAS Parallel Benchmarks

* This study is sponsored by NASA Ames Research Center under AMTI Subcontract SK-04N-02.

2

Chip

CPU/MHz

performance with that of other SGI machines. Finally, it will demonstrate some simple techniques for
optimizing the performance of a specific NAS Parallel Benchmark.

MIPS Alpha-EV68 Itanium 2 Cray X1 Pentium 4
R14000 Xeons
512, 1392, 512, 512 SSP, 512, 2.4GHz
6 0 OMHz lGHz 1.5GHz 8 0 OMKz

Cray X I Hardware Description
The Cray X1 design is the incorporation of the previous Cray parallel vector processing (PVP) systems
(such as SVl) and massively parallekprocessing (MPP) systems (such as T3E). The Cray X1 is
hierarchical in processor, memory, and network design. The basic building block is the multi-
streaming processor (MSP), which is capable of 12.8 Gflops for 64-bit operations. Housed in each
MSP are 2 MB of cache shared by four single-streaming processors (SSPs). Each SSP is capable of 3.2
Gflops for 64-bit operations, each with 32-stage, 64-bit floating point vector unit and a two-way super-
scalar unit.

MpI-ALLtoALL MB/ sec /pro MB/ sec/proc

2 CPUS 116.995 276.731
8 CPUs 105.114 56.148
16 CPUs 97.540 33.380
32 CPUs 81.434 28.525
64 CPUS 64.540 24.211

C

The concept of "CPU" is not very clear. From a programmer's point of view, if the application is
compiled with the 'LOssp" flag option, each SSP can be viewed as a single CPU; otherwise, an MSP is
viewed as a single CPU. Since the X1 processor was developed to be comparable to the NEC SX-6
processor, which has eight vector pipes, OIE MSP is normally viewed as a CPU.

ME/ sec/proc m/sec/proc MB/ sec/proc

874.000
223.642
131.710

3025.179 63.565
2629.884 63.805
2188.945 60.481

95.533 1499.350 51.139
55.314 803.575 46.140

Four MSPs form a Cray X1 node. Within a node, there are 16 GB (or 32 GB) of flat, shared memory.
There are three forms of cache in a Cray X1 system, namely, D-cache, I-cache, and E-cache. Each SSP
has a 16 KB scalar data cache (D-cache) and a 16 KB instruction cache (I-cache); they are two-way set
associative. Each MSP has a 2 MB &cache shared by the four SSPs.

Table 1: Basic Performance Comparison With Other Platforms
Machines I SGI 03K I CPQ SC45 I SGI Altix I Cray X I I Linux
Hardware

CPUhode 14 1 4 1 2 I 4 MSPs 1 2 I I

!

I

I
3

Table 1 gives comparison of some platforms with X1. The platforms compared were, at one time,
available at NASA Ames Research Center where a performance comparison was completed in March
2004. It is observed that although the MPI bandwidth of X1 is very high, the latency is very low (9.2
msec.) across MSPs. The latency is a bit faster (5.1 msec.) across SSPs within an MSP. Nevertheless,
if an application is latency-bounded, the performance on the X1 would be penalized. According to
Cray engineers, the later version of X1 will be improved.

MSP and SSP
There are two different modes of compiling and running a software application on X1: namely, the
MSP mode and the SSP mode. The default is the MSP mode. To use the SSP mode, one has to
compile with the flag 'LOssp" (Fortran).
The concept of multi-streaming can be illustrated in the following do-loop:

DO i = 1 , 2 0 0 0

ENDDO
k (i) = A (i) * p i

Each MSP has four SSP processors. Processor SSPO works on I=1501-2000, SSPl works on I=1001-
1500, SSP2 works on I=501-1000, and SSP3 works on I=1-500. This do-loop is also called a
streaming region. Only one of the four SSP processors is used outside of the streaming regions. So,
streaming is compiler auto-parallelization of eligible loops, with the work divided between the four
SSPs per MSP. If multiple loops exist, the compiler will automatically apply the streaming to an outer
loop when feasible. This is identical to the PARALLEL DO directive in OpenMP. In the MSP mode,
the synchronization between SSPs is done on hardware with lower overhead than using the OpenMP
directive.

When an application has difficulty scaling to a large number of processors, using the MSP as the
principal MPI process provides a more powerful processing node. This may allow scaling to a higher
sustained performance level with fewer computational units.

In order to determine if the compiler multi-streams a do-loop, om can include the compiler flag 'Lm"
for loop markmg. After compilation, a text file (loop-mark report) is created. For example,

78. 1 M-----< do j= jst, jend
79. 1 M V---< do i= i s t a r t , iend
80. 1 M V dunax= max! dumax, abs! du(i, I)))
81. 1 M V u(i, j) = u(i , j) + du(i , j)
82. 1 M V---> enddo
83. 1 M-----> enddo

The "M" means multi-stream, and the "v" means vectorization. The loop-mark report indicates that
the compiler performs multi-streaming in the outer loop and vectorization in the inner loop, index Y'.

It should be realized that the vectorization happens at the SSP level, whereas the streaming only exists
for MSPs. If a code streams well, an MSP is effectively an extremely powefil single processor. If it
doesn't stream, then it just wastes three SSPs, and it should be run in SSP mode.

4

Even running in SSP mode, the code should be vectorized in order to achieve good performance on the
X1. As mentioned before, the one X1 node has 16 SSPs; these SSPs share the same 16 GB of memory.
If the application does not do well in streaming and O p e W is desired, one can use a maximum of 16
SSPs for 16 OpenMP processes.

Sample Problem - Laplacian
The physical problem is to solve the Laplace Equation, which is the model equation for diffusive
processes such as heat flow and viscous stresses. It makes a good test case for approaches to numerical
programming. In two dimensions, the Laplace Equation takes the following forms:

(1)
a2u
ax2 ;hc2

v2u =-+- = 0

The set of boundary conditions in this
report is shown in the Figure 1. For the
sake of simplicity, the initial guess of
the solution is u=O.

u(x,L)=O

The computational grid is 2000 by 4000, U (0 , v)
= O with 2000 grid points in the x-direction

and 4000 points in the y-direction. For
parallelization, we use 1-D domain
decomposition in the y-axis.

The standard finite-difference explicit
approach is used to discretize equation

u(x,O)=O

Figure 1. Computational grid and the boundary conditions

(1).

Equation (1) becomes
ul;l,j - 2u1:;1 + u,:,,j u*:j+, - 224;;' + q j + l v u - 2 + + O(Ax2,Ay2)

Ax2 AY '
where ul:j is the approximated solution of Eqn. (l), after n iterations, at the f h grid point in the x-axis

and thej* grid point in the y-axis. The truncation error, O(Ax2, Ay') , is in the order of the square of
the grid size. This error is small if the number of grid points is large. Rearranging Eqn. (2), we have an
iterative scheme,

(3)

The initial guess, 1.4~:~ , of the solution is set to be zero.
The same iterative scheme in Eqn. (3) is solved by five different computational regimes. Two of these
are for serial implementation, and the rest are for parallel implementation.

There are two possible serial approaches in implementing the finte-difference solution to the Laplace
Equation described above.

I
1 , ,

I .
5

The cache-friendly approach: cache.f90
The Au,, calculations, the Au- comp&sons, and the u,,, updates are performed simultaneously. This
approach performs well on cache-based microprocessor architectures because it tends to re-use cache.
The main do-loop in an iteration process is gwen belo
into the inner do- loop.

do j = 2 , j m l
do i= 2 , i m l

du(i , j) = 0 . 2 5 * (uo(i- 1, I)+
uo(i , j - 1)+ uo(i, j+ 1

v. It is noticed that we jam all the calculations

uo(i+ 1, j) + &
) - uo(i , j)

dumax= m a x (dumax, a b s (du(i , j)))
U(i , j) = uo(i , j) + d u (i. j)

enddo
enddo

The vectorized approach: vect.f90
All A u , , ~ 's are computed, then a Au- is fimd before all u,,] 's are updated. This approach should
perform well on vector-based architectures, such as the Cray X1 and T90 series. The main do- loops in
the iteration process are given below.

do j = 2 , j m l
do i= 2 , i m l

du(i , j) = 0 . 2 5 * (uo(i- 1, j) + uo(i+ 1, j) + &
uo(i , j - I)+ uo(i, j + 1)) - uo(i , j)

enddo
--ad-
T-IIUU"

do j= 2 , j m l
do i= 2 , i m l

dum== m a x (dumax, abs (du(i, j)))

u (i , j) = uo(i, j) + du(i, j)
enddo
enddo

The Shared Memory Paradigm: omp.f90
We parallelize the cache- fiiendly code (cache.f90) that uses OpenMP for multi-threading. The j-loop
comprises the bulk of the work in the program and, clearly, should be parallelized. The main do- loop
in the iteration process is given below.

6

Machines SGI 02K SGI Altix Cray X I
Compilation -03 -r8 -64 -mips4 -rlOOOO -03 -r8 -tpp2 -Vaxlib
Compiler Ver 7.3.1.3~1 Ver 8.0 Ver 5.1.0.3
vect.f90 22.8523922 sec. 4.010742 sec. 1.27633 sec. .
cache.f90 12.4084873 sec. 5.435039 sec. 64.8442 sec.

! $OMP DO R E D U C T I O N (m a x : d u m a x)
do j = 2 , j m l
do i= 2 , i m l

du(i , j)= 0.25*(uo(i- 1, j)+ uo(i + 1, j)+ &
uo(i , j - 1)+ uo(i , j + 1))- uo(i , j)

d u m a x = m a x (dumax, abs (du (i , j)))
u(i , j) = uo(i , j) + d u (i , j)

enddo
enddo
! $OMP END DO

The Distributed Memory Paradigm: mpi.f90
We can divide the grid into segments and assign a MPI process to each segment. Each segment also
needs to maintain “ghost cells”, which contain solution values at points on the boundaries of
neighboring processes; the ghost cells are kept up-to-date by passing messages between processes
containing the boundary values.

do j = j s t , jend
do i= i s t a r t , iend

d u (i , j) = 0.25*(uo(i- 1, j) + uo(i + 1, j) + &

d u m a x = m a x (d u m a x , abs(d u (i , j)))
u(i , j) = uo(i , j) + d u (i , j)

uo(i , j - 1) + uo(i , j+ 1)) - uo(i , j)

enddo
enddo

! C o m p u t e the overa l l res idua l
c a l l MPI-REDUCE(d u m a x , g d u m a x , 1, MPI-REAL8, MPI-MAX, 0 &

, MPI-COMM-WORLD, i e r r)

! sending and receiving boundary data (M P I - s e n d / M P I - R e c e i v ...

Vecforiza fion
It is a good exercise to compare the performance of the vector code and cache-friendly code on various
machines. The following table (Table 2) shows the performance of the vect.90 and cache.fP0 codes of
the Laplacian solver on three different platforms.

It is noted that the vector code is 50 times faster than the cache-friendly code on XI . Thus,
vectorization is the key on this platform.

I

I

7

Machines 02K Mtix x 1
omp.f90 MSP SSP
2 o m Proc 5 8.83 3 6296 22.2773 3.52 9.63

- 4 OMP Proc 3 1.7845402 11.1982 1.97 5.43

OpenMP mode
It is interesting to determine the performance of the OpenMP code on the X1 using different (MSP,
SSP) modes. The shared memory arena is only available within one node; thus, one cannot use
OpenMP across two nodes. The maximum number of OpenMP processors available for use in the
MSP mode is four; in the SSP mode it is 16.

The MSP mode is faster than the SSP mode because streaming occurs in the outer loop in addition to
the OpenMP. In the case of the 4-OMP processor run, there are effectively 16 SSPs working on the
loop.

It is difficult to conclude which mode is more efficient than the other. General belief is that streaming
is more efficient (less overhead) than OpenMP; therefore one would use the MSP mode rather
OpenMP. However, from the above example, the 4-OMP run in MSP mode does not seem very
efficient in utilizing the processors. When considering the scaling of the Origin 02K and Altix
platforms, our simple OpenMP case has almost perfect scaling (factor of two), but the X1 does not. It
is believed that the implementation of OpenMP on the X1 leaves room for improvement.

Suppose an application requires 16 MPI processes. There are two configurations to consider. One c m
either use 16 SSPs (4 MSPs) or just use 16 MSPs. Unfortunately; there is no rule of thumb to just&
what configuration to use. One has to test it both ways. However, it makes sense to use the MSP mode
if the code streams well and if MPI communication is a bottleneck.

Below is a demonstration of the performance differences in MSP and SSP modes for the mpi.f90 code.
Using the Fortran compiler flag 'inn" to create a loop-mark report (see Figure 2). The outer loop at
line 72, indicated with letter "M', is being streamed in the MSP mode; and vectorization (indicated by
a letter V") is performed in the inner loop for both cases. The letter "r" means unrolling at the
compiler level.

The two reports in Figure 2 are identical except the MSP report has letter "M" indicating multi-stream.
Our test case is a very nice multktream code. On the other hand, it is also very efficient in the MPI
communication paradigm using high-bandwidth unblocked MPI send and receive. Figure 3 compares
the performance from the MPI code using MSP and SSP modes. The horizontal axis indicates the
number of PE (MPI processes). Using 2 PES in MSP mode would require 8 SSP processors; whereas,
using 2 PES in SSP mode requires 2 SSPs.

Therefore, the 2-PE run in MSP mode (red line) is using the same amount (8) of SSPs as the 8-PE run
in the SSP mode (green line). It is shown that these two runs have the same performance in terms of

8

timing. However, as we increase the number of PES, the 16-PE run in the SSP mode is slower than the
4-PE m in MSP mode.

This can be explained by the fact that as PE increases, the number of communication increases but the
transfer data size is smaller. Therefore, the latency bound of the machine is revealed. Even though the
communication is confined in the same node (16 SSPs per node), and it is supposed to be fast, the
shortfall of the latency of X1 will catch up in OUT case. On the other hand, streaming is a very efficient
and powerhl tool on the X1. If the code streams well, one may be inclined to use the processor power
for streaming rather than on passing messages (MPI).

MSP mode

68. 1-------< do it= 1, itmax
69. 1 dumax= 0.0
70. 1 jst=jstart
71. 1 if(rank.eq.0) jst=jstart+l
72. 1 Mr----<
73. 1 Mr V--<

do j= jst, jend
do i= istart, iend

74.
75.
76.
17.
78.
79.
80.
81.

Mr V
Mr V
Mr V-->
Mr---->
M-----<
M V---<
M V
M V

du(i, j)= 0.25'(uo(i- 1, j)+ uo(i+ 1, j)+ 8I
uo(i, j- 1)+ uo(i, j+ 1))- uo(i, j)

enddo
enddo
do j = jst, jend
do i= istart, iend
dumax= max(dumax, abs(du(i, j)))
u(i, j)= uo(i, j)+ du(i, j)

82. 1 M V---> enddo
83. 1 M-----> enddo
90. 1 ! Send phase
91. 1
92. 1 i= 1
93. 1 MV----<
94. 1 MV
95. 1 MV i= i+ 1
96. 1 MV----> enddo
97. 1 length= i- 1
98. 1
99. 1
100. 1 endif

if (left .NE. MPI-PROC-NULL) then

do j = jstart, jend
Ibuf(i)= u(istart, j)

call MPI-SEND(Ibuf, length, MPI-REAL8, 81
left, it, mpigrid, ierr)

SSP mode

68. 1------< do it= 1, itmax
69. 1 dumax= 0.0
70. 1 jst=jstart
71. 1 if(rank.eq.0) jst=jstart+l
72. 1 r----<
73. 1 r V--<
74. 1 r V
75. 1 r V
76. 1 rV-+ enddo
77. 1 r----> enddo
78. 1 2 - 4
79. 1 2 V--<
80. 1 2 V
81. 1 2 V
82. 1 2 V--> enddo
83. 1 2--+ enddo
90. 1 ! Sendphase
91. 1
92. 1 i= 1
93. 1 V----<
94. 1 v
95. 1 v i= i+ 1
96. 1 V----> enddo
97. 1 length= i- 1
98. 1
99. 1
100. 1 endif

do j = jst, jend
do i= istart, iend
du(i, j)= 0.25'(uo(i- 1, j)+ uo(i+ l,j)+ 81

uo(i, j- I) + uo(i, j+ 1))- uo(i, j)

do j = jst, jend
do i= istart, iend
dumax= max(dumax, abs(du(i, j)))
u(i, j)= uo(i, j)+ du(i, j)

if (left .NE. MPI-PROC-NULL) then

do j = jstart, jend
Ibuf(i)= u(istart, j)

call MPI-SEND(Ibuf, length, MPI-REAL8, &
left, it, mpigrid, ierr)

Figure 2. Loop-mark Reports of MSP and SSP modes

9

2 4 6 8 10 16 PES

Figure 3. MSP and SSP performance on MPI Laplacian solver.

If one's MPI codes rely on the system for internal buffering of messages, one has to turn it one. This is
turned off by default on the XI. To turn it on and/or increase buffer size, one can set the followkg
environment variables:

export MPI -RUFFER=l
export MPI-BUFFER-MAX=~O~OOOO (default 0 bytes)

Another variable that may be of interest when sending long messages is MPI-BUFS-PER-PROC. The
defxd: is 16 or 32 pges (1 page = 16 KB).

Data Size Piffalls
One topic worth discussing in code porting to XI is data size. The XI system is, by default, an IEEE
32-bit system with compiler options and libraries to permit the use of 64-bit data type. To increase the
default data size from 32 bits to 64 bits, one can use the Fortran compiler option -s default 64.
Selectively, one can use -s integer64 and - s real64 options to change the default data sizes
of integers, logical, or real to 64 bits.

It should be noted that the REAL KIND=^) and REAL have the same range and precision when the -S
default 3 2 Compiler option is enabled (default). The REAL (KIND= 8 and REAL have the same range
and precision when the -S default 64 option is enabled.

For example, ifthe -s default64 option is used, variables declared as DOUBLE PRECISION will be
promoted to 128 bits. However, the LibSci scientlfc library does not support that (please see Table 4
for argument types and sizes for LbSci on Cray). Normally, one would turn off the double precision
by using the compiler option -dp. That is, compiiing with - s def aul t64 -dp will promote REAL
variables to 64 bits and keep those RSXL (K X D = ~) or DOUSLE PRSCISION variables to 64 bits.

The XI compiler links the appropriate libraries according to - s default32 or -3 default64.
Therefore. the h@I libraries provide support only for codes compiled with the -S def ault32 and -S
default 64 options. In other words, compiling with - s rea164 , and expecting h@I to recognize that
the transfer (MPI sendlreceive) variables are 64-bit would be wrong!

10

Using - s default 6 4 will convert INTEGER to INTEGER KIND=^) . l h s will crash certain system calls
that require an INTEGER* 4 argument (such as FLUSH). In this case, one has to declare the relevant
variables explicitly to ensure that the variables will not be promoted to (KIND= 8) by accident.

Details of the data type information can be found in the Cray X1 User Environment Differences,
S-23 10-5 1 Chapter 4. Libraries Differences. [5]

Table 4: Argument types and sizes for LibSci on Cray

Type Description
single precision real

double precision real

single precision complex

double precision complex

integer

32-bit Library (default) 64-bit Library

Bits Fortran Specification
32 REAL (KIND=4),

REAL * 4
64 REAL (KIND=8),

REAL * 8
64 COMPLEX (KIND=4) ,

COMPLEX* 8
12 8 COMPLEX (KIND=8) ,

COMPLEX*16
32 INTEGER(KIND=4),

INTEGER* 4

Bits Fortran Specification
64 REAL KIND=^) ,

N/A N/A
REAL * 8

12 8

N/A N/A

COMPLEX (KIND=8) ,
COMPLEX*16

64 INTEGER(KIND=8),
INTEGER* 8

NAS Parallel Benchmark
One of the benchmarks in the NAS Parallel Benchmark 2.4 suite [7] is used to demonstrate
performance optimization on the X1. Table 5 shows the timing of a subset of the benchmarks. This
version of NAS Parallel Benchmark uses MPI.

The LU benchmark solves a finite difference discretization of the 3-D compressible Navier-Stokes
equations through a block- lower-triangular block-upper-triangular approximate factorization of the
original difference scheme. The BT benchmark uses an implicit algorithm to compute a finite-
difference solution to the 3-D compressible Navier- Stokes equations. The resulting equations are
block-tridiagonal (the fourth order dissipation appears only on the right-hand side, so the left-hand side
difference stencil has a width of three blocks). The MG benchmark implements a V-cycle multi-gnd
algorithm to solve the scalar discrete Poisson equation.

The MG benchmark MFLOPS rate in Table 5 is about the same as shown in Dunigan's emhation [6].
However, the paper did not give the MFLOPS of the other benchmarks. The comparison for all NAS
parallel benchmarks can be found in [8]. From Table 5 , it is seen that X1 does well only with the MG
benchmark, the others do not do well at all.

L

11

Machines

Compilers and
Libraries

Optimization FIags
Mopls Total

SGI 02W03K Altix Cray X1
400/800 MHz 1.3GHz I 1.5GHz 800 MHz
MIPSpro.7.3.l.lm Intel Fortran Compiler V7.1 Cray Fortran
mpt.l.4.0.0 cftn.4.3

-0fast -64 -03 -w -ip -tpp2 -stack-temps -03 -0ssp

1 bt.B.4
bt.B.16
bt.B.64
lu.B.4
lu.B.16
lu.B.04
mg.B.4
mg.B.16
mg.B. 64

71 15390
466
1992
12700
879
3941
20656
643
2432
15644

13947
381

1532
5506
24221
3837
14585
46684
2943
12210
35688

1435
6689

I7557
561
2597

668
2645
10090
1441
5281
20004
9141
31549
88587 i

1688
6018
31486
4641
16755
58370
3486
12773
46083

I I

bt.C.4 220 417
bt.C.16 1065 1811
bt.C.64 5954 10240
lu.C.4 542 845
lu-C.16 2107 3297
l i i . C . 6 4 9713 14923

1117 1559
5555 6214
21657 26970
2 647 4447
15374 17034
52269 59283

10451

mg.C.4 267 522 2420
mg.C.16 1468 2398 10525
mg.C.64 5599 9664 46806

2969
13782
51590

I 21747
47382

Pe rfo rman ce 0 ptim kat io n
The BT Class C, built with MSP mode, will be used as an example for performance optimization. The
original performance is about 180 MFLOPS/process using -03 compilation flag. From the table above
the MFLOPS/process rate of the BT (in SSP mode for a range of numbers of processors) is about 165;
so the original BT does not stream well at all!

To understand where the "hot spot" is, we create an instrumented executable (bt.C.9-inst) by using
"pat-build" after the executable (bt.C.9) is built. The instrumented executable will be used and an
instrumented file (*.xf He) will be created. A report can be created by "pat-report":

prompt, pat-build bt.C.9 bt.C.9-inst
prompt> mpirun -np 9 ./bt.C.g_inst
prompt> pat-report bt.C.9-inst+250973pdt.xf

The report shows that routine "binvcrhs" takes most of the time and it is called by x-solve-cell,
y-solve-cell, and z-solve-cell. From the loop-mark (use flag -m) report of the file x-solve.f, the
area of interest is the loop (line 439) in routine x-solve-cell, see Figure 4. The loop-mark report shows

that ths loop is not streamed nor vectorized because subroutines matvec-sub, matmul-sub, are
binvcrhs are in the loop. Thus, we d i n e the subroutines by adding Irective, ! dir$ inline, before
the call of the routines or adding !dir$ inlinealways binvcrhs inside the routine binvcrhs. One
can always use the compiler to do the inlining by using the flags:

-0inline5 andfor -Oinlinefrom={x-solve.f,lhsx.f}

12

439. 1 ---------- c
440. 1 2--------c do j=start(2,c)jsize
441. 1 2 3------<
442. 1 2 3
443. 1 2 3 c __________..____________________________-------------- * _ _ _ _ _ _ _ _ _ _ _ _ _ _
444. 1 2 3 c rhs(i) = rhs(i) - A'rhs(i-1)
445, 1 2 3 c ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - - - - - - - ~ ~ ~ ~ ~ - - ~ - - - ~ - - - ~ ~ ~ ~ ~ ~ ~ ~ - ~ - ~ ~ - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ - ~ ~ ~ ~
446. 1 2 3 I => Vs call matvec-sub(lhs(l,l,aa,ij,k,c),
441. 1 2 3 > rhs(1 ,i-1 j,k,c),rhs(l ,i,j,k,c))
448. 1 2 3
449. 1 2 3 c ---___________------~-.--
450. 1 2 3 c B(i) = B(i) - C(i-l)*A(i)
451. 1 2 3 ...
452. 1 2 3 I => Vs
453. 1 2 3 > Ihs(l,l,cc,i-1 j,k,c),
454. 1 2 3 > Ihs(l,l,bb,ij,k,c))
457.123 ...
458. 1 2 3 multiply c(i,j,k) by b-inverse and copy back to
459. 1 2 3

461. 1 2 3
462. 1 2 3 > Ihs(l,l,cc,ij,k,c),
463. 1 2 3 > rhs(l,ij,k,c))
464. 1 2 3

do k=start(3,c),ksize

do i=istart+first,isize-last ftn-3022 ftn: INLINE File = x-solve.f, Line = 427

too large to expand inline.

ftn6288 fin: VECTOR File = x-solve.f, Line = 439

because it contains a call to subroutine "binvuh-"
on line 461.

Routine BINVCRHS was not inlined because it is

A loop starting at line 439 was not vectorized

call matmul-sub(lhs(l,l,aa,ij,k,c),

c
c multiply rhs(lj,k) by b-inverse(lj,k) and copy to rhs

460. 1 2 3 c ______________._________________________-----------------------------
call binvcrhs(Ihs(1,l ,bb,ij,k,c),

Figure 4. Loop Mark Report of x-so1ve.f. 465. 1 2 3------> enddo
466. 12--------> enddo

!

i

Since tkre is dependency in "i" (see line 450 in Fig 4.); we don't get vectorization in "i"; but we can
get vectorization in "j". Thus, we move the i- loop outside and force concurrent execution by adding
directive ! dir$ concurrent : \

do i=istart+first,isize-last
!dir$ concurrent

!dir$ concurrent
do k=start (3,c) ,ksize

do j=start(2,c),jsize

Similar directives should be put in y-solve-cell and z-solve-cell as well.

The next routines of interest indicated from the pat-report are lhsx.f, lhsy.S and Ihsz.f; they are called
by the x-solve.f, y-solve.f, and z-solve.f, respectively. From the loop- mark report of x-so1ve.f :

13

ftn-3021 ftn: INLINE File = x-solve-f, Line = 54

the routine to expand it inline.
Routine LHSX was not inlined because the compiler was unable to locate

So, we can inline the routine by putting the directive 'I! dir$ inlinealways lhsx" inside lhsx.f.
Similarly, we can inline h y . f and lhszf. However, the loop-mark report in lhsx.f shows that there is
no streaming in one of the loops, the reason is :

ftn-6755 ftn: STREAM File = lhsx.f, Line = 24

was found on "TMP1" between lines 28 and 121.
A loop starting at line 24 was not multi-streamed because a recurrence

Here are the two occurrences of the variable tmpl :
24. 1 --_---_ < do k = start(3,c), cell_size(3,c)-end(3,c)-l
25. 1 2-----< do j = start(2,c), cell-size(2,c)-end(2,c)-l
26. 1 2 VS--< do i = start(1,c)-1, isize + 1
27. 1 2 Vs
28. 1 2 Vs tmpl = 1.0d+00 / u(l,i,-j,k,c)
29. 1 2 Vs tmp2 = tmpl * tmpl
30. 1 2 Vs tmp3 = tmpl * tmp2

and
119. 1 2 vs--<
120. 1 2 vs
121. 1 2 vs
i22. 1 2 vs

do i = start(l,c), isize

tmpl = dt * txl
tmp2 = dt * tx2

Although these two tmpli s are not related, the compiler cannot distinguish if they are recurrent or
independent. One can solve this problem by renaming the second tmpl. Then, the loop will be
streamed. After recompile and rerun the benchmark, the new performance number is 1235.67
MFLOPS/process using the compilation flags,
-03 -0inline5 -Oinlinefrom={x-solve.f,lhsx.f}.

The performance number indicates that we are heading to the right direction. Repeat the "pat-report"
profiling, it is found that the x-so1ve.f is s t i l l the most time consuming file. The loop in Fig.4 becomes
the loop in Figure 5.

I

matvec-sub and matmul-sub. Those loops, however, is only of size 5:

439. C do i=istart+firs~isize-last
440. m !dit-$ concurrent
441. m M __.____- c

442. r n M !dir$ concurrent
443. m M > ____-____ c

444. m M 3

ftn-6294 ftn: VECTOR File = x-sdve.f, Line = 443

because a better candidate was found at line 448.
do k=start(3,c),ksize A loop starting at line 443 was not vectorized

do j=start(2,c)Jsize

...
448. rnM31 call rnatvec-sub(lhs(l,l,aa,iJ,k,c),
449. m M 3 > rhs(l,i-lJ,tc).rtts(l,ij,k,c))
450. rnM3

Figure 5. New Loop Mark Report of x-so1ve.f. The J-loop is not vectorized.

The loop-mark report indicates that the loop starting at line 443 is not vectorized because a better
candidate was found at line 448. It turns out that the compiler vectorizes the loops in routines

14

do j=1,5
cblock(1, j) = cblock(1, j) - ablock(1,l) *bblock(l, j)

> - ablock(l,2)*bblock(2, j)
> - ablock (1,3) *bblock (3, j)
> - ablock (1,4) *bblock (4, j)

Therefore, a directive 'I! dir$ unroll 5" can be put in front of the loops in matvec-sub and
matmul-sub to avoid the vectorization of this loop of size 5 . With the unrolling, the performance is
2173. MFLOPS/process because the loop 443 in Fig. 5 is vectorized.

Similar directive can be put in front of loops in other routines, for example, in routine,
x-send-solve-info :

175.
176.
177.
178..
179.
180.
181.
182.
183.
184.

By adding compiler directives, the perfonnance of the BT Class C is improved from 180
MFLOPS/process to 21 73 MFLOPS/process, about 12 times faster than the original benchmark.

Conclusion
In thls paper we have shown the characteristics and application optimization techniques on the X1
system. The characteristics and performance of the system on vectorized code, cache- friendly code,
MPI code, and OpenMP code are demonstrated with a Laplacian solver. It is realized that an
application code has to be vectorized in order to perform well on the X1. The multkstream capability
is very desirable in order to achieve good performance from the X1. A vectorized loop can be 50 times
faster than a cache-friendly code on X1. The differences in MSP and SSP modes are also
demonstrated. There is no rule of thumb to justifL what configuration to use. One has to test it both
ways. However, it makes sense to use the MSP mode if the code streams well and if MPI
communication is a bottleneck. It is demonstrated that for a fixed data size, as number of PE increases,
the number of communication increases but transfer data size decreases; the latency bound of the
machine is revealed. Even though the communication is confined in the same node (16 SSPs per
node), and it is supposed to be fast, the shortfall of the latency of X1 will catch up in our case. If the
code streams well, one may be inclined to use the processor power on streaming rather than on MPI.

The X1 performance is also conpared with other SGI machines (Origins and Altix). Several common
and important compilation flags and environment variables are introduced as well. We demonstrate
the usage of a profiling tool, pat-build, and the loop-mark report to improve the performance of a NAS
Parallel Benchmark from 180 MFLOPS/process to 21 73 MFLOPS/process.

The pitfall of data size on X1 is also discussed. For example, the flag - s rea164 should be used with
care because the native MPI library does not support it.

15

Acknowledgement :
The author appreciate in depth to Dr. Johnny Chang fiom NASA Ames Research Center for his help
on the BT Benchmark and the User Supporting Group at Artic Region Supercomputer Center (ARSC)
for the Cray X1 account.

Reference:
[1] http ://www .beowl f. orgheowul f/proj ects .html
[2] Gordon Bell prizes at the SC2002 Conference:
http : //access .ncsa.uiuc . edu/Releases/02Releaes/ 1 1.07.02-SC2 002-Gor . html
[31 Cray Inc., http ://www.cray .com/products/systems/x 1/
[4] h ~ : / ~ ~ ~ ~ r . o r n l . ~ o v ! i n f o / p r e s s releasesjget Dress release.cfm?ReleaseNumbe~20040512-00
[51 http: ilwww. cray. com/cgi-bin/swpubs/craydoc3 Oicraydoc. cgi
[6] Dunigan T.H. et al. "Early Evaluation of the Cray X1 It, SuperComputing 2003, Nov. 15-21 , 2003,
Phoenix, AZ, USA.
[7] Bailey, D.H. et al. "The NAS Parallel Benchmarks 2.0, Tech. Rep. NAS-95-010, NASA Ames
Research Center, Moffett Field, CAY 1995.
[81 http://~~~~.halcyonsystems.comlphp/employees/cheung/PROJECTSINAS ProiectsiXl NPB.htnd

